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EYEWITNESS DECISION-MAKING 2 

Abstract 

When presented with a lineup, the witness is tasked with identifying the culprit or indicating that 

the culprit is not present. The witness then qualifies the decision with a confidence judgment. 

But how do witnesses go about making these decisions and judgments? According to absolute-

judgment models, witnesses determine which lineup member provides the strongest match to 

memory and base their identification decision and confidence judgment on the absolute strength 

of this MAX lineup member. Conversely, relative-judgment models propose that witnesses 

determine which lineup member provides the strongest match to memory and then base their 

identification decision and confidence judgment on the relative strength of the MAX lineup 

member compared to the remaining lineup members. We took a critical test approach to test the 

predictions of both models. As predicted by the absolute-judgment model, but contrary to the 

predictions of the relative-judgment model, witnesses were more likely to correctly reject low-

similarity lineups than high-similarity lineups (Experiment 1), and more likely to reject biased 

lineups than fair lineups (Experiment 2). Likewise, witnesses rejected low-similarity lineups with 

greater confidence than high-similarity lineups (Experiment 1) and rejected biased lineups with 

greater confidence than fair lineups (Experiment 2). Only a single pattern was consistent with the 

relative model and inconsistent with the absolute model: suspect identifications from biased 

lineups were made with greater confidence than suspect identifications from fair lineups 

(Experiment 2). The results suggest that absolute-judgment models better predict witness 

decision-making than do relative-judgment models and that pure relative-judgment models are 

unviable.  

Keywords: eyewitness memory; eyewitness lineup; signal detection theory; relative 

judgment; absolute judgment; memory  
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Absolute-Judgment Models Better Predict Eyewitness Decision-Making than do Relative-

Judgment Models 

In the process of solving crimes, police investigators often present witnesses with lineups. 

A lineup is a procedure in which the photograph of a suspect is surrounded by the photographs of 

known-innocent persons called fillers and presented to a witness for an identification attempt. 

The task of the witness is to indicate which lineup member, if any, is the culprit. But how do 

witnesses go about making that judgment? How should witnesses go about making that 

judgment? Psychological scientists have long been interested in both descriptive and normative 

models of eyewitness decision-making. In the present work, we examined the cognitive 

processes that give rise to lineup decisions and associated expressions of confidence. More 

generally this work sheds light on the cognitive processes that underlie tasks of unforced 

choice—tasks in which respondents have the option of choosing from a limited array of options 

or rejecting the entire array (Cervantes & Benjamin, 2024). Specifically, we examined whether 

eyewitness identification decisions were more consistent with the predictions of absolute-

judgment models or relative-judgment models. 

The distinction between absolute-judgment strategies and relative-judgment strategies has 

long influenced theories of eyewitness decision-making (Wells, 1984, 1993). However, the 

historical distinction between absolute- and relative-judgment strategies in eyewitness 

identification procedures is distinct from how the absolute-relative distinction is defined more 

broadly in cognitive psychology. Wells (1984) introduced the absolute-relative distinction to 

explain why innocent persons were often mistakenly identified despite bearing only a modest 

resemblance to the culprit. According to Wells (1984), a witness who does not appreciate that the 

culprit might not be present in the lineup is at risk of adopting a relative-judgment strategy, and 
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identifying whichever lineup member provides the strongest match to memory for the culprit 

even if the absolute match is not particularly strong. Because the culprit might not be present in 

the lineup, what a witness should do instead is adopt an absolute-judgment strategy and only 

identify a lineup member if the absolute match between that individual and her memory for the 

culprit is strong. Hence, historically, the absolute-relative distinction was intended to explain 

why witness criterion setting was often too lax (Wells, 1984).  

With the introduction of formal modeling to the identification literature, the relative-

absolute framework evolved into a distinction in how witnesses assess the strength of memory 

evidence (Clark, 2003; Clark et al., 2011). It is in this vein that we examine absolute and relative 

judgment processes. As a starting point, we describe a lineup procedure from the perspective of 

signal-detection theory. Signal detection theory describes how judgments are formed under 

situations of uncertainty and has been applied to a wide range of contexts, including eyewitness 

identification (Green & Swets, 1966; Wickens, 2002). To that end, we start with an overview of 

the simplest of lineup models: the equal-variance signal-detection model with an absolute-

judgment strategy. We refer to this as the absolute model, but it has also been referred to as the 

MAX model, the best-above model, the independent-observations model, and the dependent-

observations model (Akan et al., 2021; Clark et al., 2011; Duncan, 2006; Macmillan & 

Creelman, 2005; Smith et al., 2022; Starns et al., 2023). After we introduce the absolute model, 

we then review an alternative model that assumes witness decision-making results from a 

relative-judgment process: the BEST-REST model (Clark, 2011; Sauer et al., 2008). The BEST-

REST model is also commonly referred to as the ensemble model (Akan et al., 2021; Meyer-

Grant & Klauer, 2022; Wixted et al., 2018).1 We will refer to this model generally as the relative 

 
1 Although mathematically equivalent, there is one minor difference between the BEST-REST and ensemble model. 
As the name suggests, the BEST-REST rule assumes that the witness subtracts the average memory strength of the 
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model, but when greater precision is needed, we will refer to this as the BEST-REST model 

because that moniker more clearly articulates the presumed decision-making process than does 

the term ensemble model.2 

Eyewitness Lineups from the Perspective of Signal Detection Theory 

Figure 1 depicts the equal-variance signal detection model for eyewitness identifications 

(Green & Swets, 1966; Wickens, 2002). The horizontal axis is a random variable that reflects the 

match-to-memory strength of a given lineup member (absolute strength) and increases as one 

pans from left to right. The two Gaussian distributions reflect the range of latent match-to-

memory values for innocent (novel) persons and culprits (previously seen persons), respectively. 

Because the witness has seen the culprit before, on average, a culprit should provide a stronger 

match-to-memory than should a given innocent person. Hence, the distribution of potential 

match-to-memory values for culprits is shifted to the right of the distribution of potential match-

to-memory values for innocent persons. The standardized distance between the means of these 

two distributions is referred to as the discriminability index !𝑑! = "Culprit#"Innocent
$

$ and reflects the 

ability of a witness to discriminate between the culprit and a given innocent person. It follows 

that a six-person culprit-present lineup can be represented by one random draw from the culprit 

distribution and five random draws from the innocent-person distribution. A six-person culprit-

absent lineup can be represented by six random draws from the innocent-person distribution.  

 
remaining lineup members from the strength of the best-matching lineup member. Conversely, the ensemble model 
assumes that the witness subtracts the average of all memory signals (including the best) from the best-matching 
lineup member. Despite this minor computational difference, the models are mathematically equivalent (Wixted et 
al., 2018). 
2 There are two other models that we do not address in the present manuscript: the integration model (e.g., Duncan, 
2006; Palmer & Brewer, 2012) and the BEST-NEXT model (Clark, 2003; Clark et al., 2011). Both models have 
fallen out of favor in the literature. The decision rule proposed by the integration model is implausible, even at face, 
and the model has struggled to explain lineup data (e.g., Wixted et al., 2018). Although the BEST-NEXT model 
proposes a reasonable decision rule, it was supplanted long ago by the BEST-REST rule (Clark et al., 2011; Sauer et 
al., 2008; Wixted et al., 2018) and data patterns are more consistent with the BEST-REST rule than with the BEST-
NEXT rule (Charman et al., 2011; Horry & Brewer, 2016).  
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The Absolute-Judgment Model. But how do witnesses go about making identification 

decisions? According to the absolute model, the witness compares each lineup member to her 

memory for the culprit and determines which one provides the strongest match-to-memory (i.e., 

the MAX signal). If the degree of match between the MAX lineup member and the witness’ 

memory for the culprit exceeds the witness’ decision criterion (𝜆), the witness identifies that 

person and otherwise the witness rejects the lineup. The absolute model can be extended further 

to account for expressions of confidence. Confidence reflects the extent to which the signal of 

the MAX lineup member exceeds or falls short of the witness’ decision criterion. This is easily 

captured by assuming that the witness holds a series of decision criteria rather than a single 

criterion. Confidence is equal to the rightmost criterion that the MAX memory signal exceeds. 

Hence, if the match-to-memory strength of the MAX lineup member exceeded the rightmost 

criterion, the witness would identify that person with high confidence, and if the match-to-

memory strength of the MAX lineup member fell below the leftmost criterion, the witness would 

reject the entire lineup with high confidence.  

Figure 1: The Equal Variance Signal Detection Model 

 
Match-to-Memory Strength

λ
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Note. The rightmost distribution (black) reflects the range of latent match-to-memory strength values for the culprit 
and the leftmost distribution (grey) reflects the range of latent match-to-memory strength values for innocent 
persons. The dashed vertical lines represent decision and confidence criteria.  
 

The Relative-Judgment Model. In contrast, the relative-judgment model assumes that 

witnesses base their decisions not on the absolute strength of the MAX lineup member, but on 

the difference in strength between the MAX lineup member and the average strength of the 

remaining lineup members. In other words, witnesses transform the raw strength variable 

depicted on the horizontal axis of Figure 1 into a difference score between the MAX lineup 

member (AKA BEST) and the average strength of the remaining lineup members (REST). The 

BEST-REST rule assumes that a witness identifies the MAX lineup member if the difference in 

match-to-memory strength between that lineup member and the average match-to-memory 

strength of the remaining lineup members exceeds the witness’ decision criterion (Clark et al., 

2011; Sauer et al., 2008; Wixted et al., 2018). Like the absolute-judgment model, the relative-

judgment model can easily be extended to accommodate expressions of confidence. Confidence 

reflects the extent to which the BEST-REST score exceeds or falls short of the witness’ criterion. 

As with the absolute model, this is easily captured by assuming that witnesses do not hold a 

single decision criterion but rather a series of decision criteria. Confidence reflects the rightmost 

criterion that the BEST-REST score exceeds.  

Notice that these two models hold many assumptions in common. Both models assume 

that witnesses start by examining the lineup and determining which lineup member provides the 

strongest match to memory. Both models also assume that a witness would never identify anyone 

but the MAX lineup member. And, both models assume that the witness’ decision to identify the 

MAX lineup member or to reject the lineup and the expression of confidence associated with that 

decision is based on comparing the evidence strength to their internal decision criteria. The 

defining difference between these two variables lies in how they operationalize the decision rules 
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(evidence strength). Whereas the absolute model operationalizes the decision rule as the absolute 

strength of the MAX lineup member, the relative model operationalizes the decision rule as the 

strength of the MAX lineup member minus the average strength of the remaining lineup 

members (BEST – REST). Hence, distinguishing between these two models boils down to 

determining which decision rule more accurately predicts outcomes from eyewitness lineups. 

The Use of Absolute- and Relative-Judgment Strategies on Tasks of Recognition Memory 

Fundamental research on human recognition memory focuses primarily on two tasks: the 

old/new task and the 2-alternative forced-choice (2-AFC) task. On an old/new recognition task, 

respondents study a list of to-be-remember items (e.g., 40 words) and after a short delay, they are 

presented with a test list. The test list is comprised of both the studied (old) items and non-

studied (new) items. Studied and non-studied items are presented to respondents one at a time in 

a random order. On each trial, the respondent is tasked with indicating whether the item is old 

(studied) or new (non-studied) and providing an expression of confidence in that decision. 

Respondents base their recognition decisions and confidence judgments on the absolute match-

to-memory strength of the test probe (Macmillan & Creelman, 2005; Wickens, 2002).  

On a 2-AFC task, respondents study a list of to-be-remember items (e.g., 40 words) and 

after a short delay, they are presented with a test list. Like the old/new test, the test list is 

comprised of both the studied (old) items and non-studied (new) items. Unlike an old/new test 

each trial is comprised of one old item and one new item, and the task of the respondent is to 

indicate which of the two items is old and to provide an expression of confidence in that 

decision. It is commonly assumed that decisions and confidence judgments on a 2-AFC task are 

based on computing the difference in match-to-memory strengths between the two items (a 

relative-judgment process) (Jang et al., 2009; Macmillan & Creelman, 2005). However, the 
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results of several experiments suggest that in at least some situations, respondents might ignore 

the strength of the non-MAX signal and rely on only the absolute strength of the MAX signal 

(Hanczakowski et al., 2021; Hockley, 1984; Starns et al., 2017; Zawadzka et al., 2017).  

An eyewitness lineup is a hybrid of the old/new and alternative-forced choice tasks that 

have dominated the fundamental recognition literature. On a lineup task, the witness is exposed 

to a crime, and then after a delay is presented with either a culprit-present or culprit-absent 

lineup. Like old/new tasks, some lineups do not include the culprit and the correct response is to 

indicate that the culprit is not present. But like AFC tasks, when the culprit is present, it is 

insufficient to merely indicate that the culprit is present; the witness must also identify which 

person is the culprit. Given that lineups include elements of both old/new and alternative-forced 

choice tasks, both absolute judgments and relative judgments are candidate strategies for making 

identification decisions.   

There is some evidence that witnesses’ confidence judgments result from relative-

judgment strategies. Adding four implausible individuals (duds) to a lineup comprised of two 

plausible individuals increased witness confidence that the plausible lineup members were the 

culprit (Charman et al., 2011; see also Windschitl & Chambers, 2004). Likewise, replacing high-

similarity lineup fillers with low-similarity lineup fillers increased witness confidence in correct 

identifications of the culprit (Horry & Brewer, 2016). Both patterns are predicted by the relative 

model: adding duds to a lineup or replacing plausible lineup members with duds decreases the 

average signal strength of the non-MAX lineup members (REST) and increases the magnitude of 

the BEST-REST difference score. In contrast, the absolute model predicts that witness 

confidence would be invariant to changes in the strength of the non-MAX lineup members. 
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That the match-to-memory strength of non-identified lineup members impacts eyewitness 

expressions of confidence has been taken by some to imply that lineup data are more consistent 

with a relative-judgment process than they are with an absolute-judgment process (Wixted et al., 

2018). Yet, the decision-making patterns in these same studies paint a different picture. Adding 

duds to a lineup does not increase the identification of plausible lineup members (Charman et al., 

2011). Likewise, decreasing the similarity of lineup fillers to the suspect, if anything, increased 

correct rejections, which is the opposite of what a relative-judgment model predicts (Horry & 

Brewer, 2016). Both patterns are consistent with the absolute model which predicts that witness 

decision-making is influenced only by the absolute strength of the MAX lineup member and not 

by the strength of non-MAX lineup members. Although confidence-judgment data are consistent 

with the predictions of the relative model, the identification decisions themselves are consistent 

with the predictions of the absolute model. Hence, these data suggest that witness decision-

making might be driven by absolute strength, but witness confidence judgments by relative 

strength.  

More recent work investigating eyewitness decision strategies has taken to fitting models 

to empirical data. This work has concluded that both the relative model and the absolute model 

can account for eyewitness decision-making on lineups (Akan et al., 2021) but that the relative 

model provides a closer fit to the data (Shen et al., 2023; Wixted et al., 2018). Despite many 

virtues, one problem with a retrospective-fitting approach is that models can accommodate data 

patterns that they would not have predicted a priori. Rather than retrospectively fitting models to 

data to determine which model provides a closer fit, we took a critical test approach (e.g., Allais, 

1953; Birnbaum, 2011; Cha & Dobbins, 2021; Dobbins, 2023; Kellen & Klauer, 2015; Kellen et 

al., 2021; Ma, Starns, & Kellen, 2021). That is, we determined instances in which the absolute- 
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and relative-judgment models made divergent predictions and then carried out experiments to 

assess the viability of both pure absolute models and pure relative models and to determine 

whether eyewitness decision-making was more consistent with the predictions of the absolute 

model or the relative model.  

Rather than comparing closeness-of-fit for absolute and relative models, our aim was to 

test competing predictions derived from the two models. Closeness-of-fit will play no role in our 

consideration about whether the absolute or relative judgment model has superior construct 

validity (viz. better captures how witnesses make identification decisions). Historically, fit 

statistics have figured prominently in the comparison of non-nested decision models, but more 

recent work has emphasized the importance of the critical-testing approach (e.g., Dobbins, 2023; 

Kellen et al., 2021; Ma et al., 2021). By and large, the shift away from retrospective model fitting 

and towards the critical testing approach is attributable to the fact that retrospective model fitting 

does not typically inform on which of two models has superior construct validity (Dobbins, 

2023). Indeed, even models with psychologically meaningless parameters (e.g., a polynomial 

regression model) can retrospectively provide a good fit to empirical decision data. Conversely, 

due to measurement error, a psychologically valid model will sometimes provide a poor fit to 

empirical decision data. If invalid models can provide good fits and valid models can provide 

poor fits, then retrospective model fit is not an appropriate arbiter on which of two models has 

greater construct validity (see Dobbins, 2023). Finally, it has already been established through 

model-recovery simulations that both the absolute and relative models have the potential to 

retrospectively fit data that was generated by its counterpart (Akan et al., 2021; Cervantes & 

Benjamin, 2024). Hence, there are numerous good reasons to use a critical testing approach 

rather than focusing on retrospective closeness of fit. Following that logic, we opted not to use 
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retrospective model fitting, and instead generated predictions from competing decision models, 

determined situations in which the models made opposing predictions, and used experimentation 

to determine a winner. 

The Present Study: Using Critical Tests to Distinguish Between Absolute- and Relative-

Judgment Strategies 

Determining critical tests is complicated by the fact that, despite assuming fundamentally 

different decision-making strategies, the absolute and relative models often predict similar 

patterns of results. This is especially true for suspect-identification rates, which has long been 

the primary focus of the identification literature. Consider for example a manipulation of lineup 

composition bias. A typical biased lineup is one in which the suspect matches the witness’ 

description of the culprit, but the fillers do not (Fitzgerald et al., 2013; Lindsay & Wells, 1980). 

When this happens, even an innocent suspect would tend to provide a stronger match to memory 

than the lineup fillers. In essence, the fillers have been drawn from a weaker match-to-memory 

strength distribution than the innocent suspect. Contrast this with a fair lineup where the fillers 

match the witness’ description of the culprit and are ostensibly drawn from the same match-to-

memory strength distribution as the innocent suspect (as assumed in Figure 1). Both absolute and 

relative models assume that the probability of a suspect identification is equal to the joint 

probability that the suspect provides the strongest match-to-memory AND that the memory 

signal for the suspect exceeds the witness’ decision criterion. The absolute strength of the suspect 

is constant across biased and fair lineups, but the relative strength of the suspect is higher in the 

biased lineup. Hence, the expected BEST-REST value is larger for biased lineups than for fair 

lineups and the relative-judgment model predicts more suspect identifications from biased 

lineups. But despite assuming an absolute decision rule, the absolute model also predicts more 
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suspect identifications from biased lineups because the suspect is more likely to provide the 

MAX signal on a biased lineup compared to a fair lineup.  

Rejection Rates from Fair and Biased Lineups. However, when it comes to rejection 

rates, the two decision rules often make divergent predictions. For example, the absolute model 

predicts more rejections from biased lineups than from fair lineups, and the relative model 

predicts the opposite pattern. The absolute model predicts more rejections from biased lineups 

because the expected MAX value is less for a biased lineup than for a fair lineup. In other words, 

compared to fair lineups, biased lineups decrease the expected absolute strength of the MAX 

signal. Indeed, if you take six random draws from a standard normal distribution 

[𝑋~𝑁(𝜇 = 0, 𝜎 = 1)], the expected value of the MAX draw is 1.27 (Smith et al., 2023; Yang & 

Burke, 2022). But if you draw only one memory signal from that distribution (the innocent 

suspect) and the remaining memory signals from a distribution with weaker strength (the fillers), 

the expected MAX value is less than 1.27.3 Conversely, the relative model predicts more 

rejections from fair lineups because the expected difference between the MAX lineup member 

and the remaining lineup members is smaller when all lineup members are drawn from the same 

underlying distribution.  

Figure 2 shows the complements of the cumulative distribution functions predicted by the 

MAX and BEST-REST decision rules for fair and biased culprit-present and culprit-absent 

lineups. In other words, what the graphs show are the cumulative proportions of lineups (on the 

 
3 An alternative way to manipulate lineup bias is by holding the similarity between the fillers and the culprit constant 
and manipulating whether the innocent suspect is as similar to the culprit as are the fillers (fair lineup) or more 
similar to the culprit than are the fillers (biased lineup). In this context, the expected MAX signal would be greater 
for the biased lineup than for the fair lineup and therefore the absolute model would predict fewer correct rejections 
from the biased lineup than from the fair lineup. Although this could easily be manipulated in laboratory 
experiments, in criminal investigations it is typically the case that police investigators generate a suspect and then 
have control over who they select as fillers. Hence, the similarity between the innocent-suspect and the culprit is 
typically fixed and the similarity between the fillers and the culprit is free to vary. For simplicity, we focus on the 
typical situation.   



EYEWITNESS DECISION-MAKING 14 

vertical axis) that exceed any fixed level of evidence strength (on the horizontal axis). What is 

important to note is that for the absolute (or MAX) model, the distribution for the biased lineup 

is shifted to the left of the distribution for the fair lineup. This means that the absolute model 

predicts more rejections from biased lineups than from fair lineups. Conversely, for the relative 

(or BEST-REST) model, the distribution for the biased lineup is shifted to the right of the 

distribution for the fair lineup. This means that the relative model predicts more rejections from 

fair lineups than from biased lineups. Hence, one of our two critical tests involves manipulating 

lineup composition bias and comparing rejection rates. Details on the simulation used to generate 

these predictions are included in the Figure note. 

Figure 2: Evidence Strength Distributions Predicted by the Absolute and Relative Models on 

Fair and Biased Lineups  
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Note. Predictions were derived from simulations (N = 10,000) of six-person fair and biased culprit-present and 
culprit-absent lineups under the assumptions of MAX and BEST-REST decision rules. Fair culprit-present lineups 
were comprised of one random draw from the culprit distribution [𝑋~𝑁(𝜇 = 1.5, 𝜎 = 1)] and five random draws 
from the fair filler distribution [𝑋~𝑁(𝜇 = 0, 𝜎 = 1)]. Biased culprit-present lineups were comprised of one random 
draw from the culprit distribution and five random draws from the biased filler distribution [𝑋~𝑁(𝜇 = −1.5, 𝜎 =
1)]. Fair culprit-absent lineups were comprised of six random draws from the fair culprit-absent distribution and 
biased culprit-absent lineups were comprised of one draw from the fair culprit-absent distribution and five draws 
from the biased culprit-absent distribution. We also examined predictions for various other parameter settings and 
the MAX rule never predicted fewer rejections from fair lineups than from biased lineups and the BEST-REST rule 
never predicted fewer rejections from biased lineups than from fair lineups. See footnote 3 for discussion of a 
different type of lineup bias where the absolute model predicts more rejections of fair lineups than of biased lineups. 
 

Rejection Rates from Low- and High-Similarity Culprit-Absent Lineups. The absolute 

and relative models also make divergent predictions about what impact changes in absolute 

match-to-memory strength have on rejection rates. In theory, these predictions apply to both 

culprit-present and culprit-absent lineups, but in practice it would be very difficult to manipulate 

absolute strength independently of relative strength in culprit-present lineups. That would require 

strengthening culprit and filler strengths by equal amounts, probably with two separate 

manipulations, and it would always be debatable as to whether culprits and fillers had been 

strengthened to the same extent. Accordingly, for absolute strength, we focus only on culprit-

absent lineups.   

The purest way to manipulate match-to-memory strength on culprit-absent lineups is by 

holding encoding conditions constant and manipulating the similarity of innocent lineup 

members to the culprit. Imagine two culprit-absent lineups, one where all the lineup members are 

high in similarity to the culprit and a second where all the lineup members are low in similarity 

to the culprit. The absolute model predicts more rejections from the low-similarity lineup 

because the expected MAX signal strength is weaker for the low-similarity lineup compared to 

the high-similarity lineup. Conversely, the relative model predicts no difference in correct 

rejection rates because the expected BEST-REST value is invariant to changes in absolute 

strength.  
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These predictions are illustrated in Figure 3, which was based on a simulation in which 

we manipulated the absolute similarity of culprit-absent lineup members to the culprit. Notably, 

for the absolute (MAX) model, the cumulative evidence strength for the low-similarity lineup is 

shifted to the left of the cumulative evidence strength for the high-similarity lineup, which means 

the absolute model predicts more rejections from low-similarity lineups than from high-

similarity lineups. For the relative (BEST-REST) model, the cumulative evidence strength for the 

low-similarity lineup falls right on top of the cumulative evidence strength for the high-similarity 

lineup, meaning that the relative model predicts no change in rejection rates. Hence, another 

critical test of absolute and relative models involves comparing correct rejection rates for low-

similarity and high-similarity lineups. Details on the simulation used to generate these 

predictions are included in the Figure note. 

Figure 3: Evidence Strength Distributions Predicted by the Absolute and Relative Models on 

High-Similarity and Low-Similarity Culprit-Absent Lineups  
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Note. Predictions were derived from simulations (N = 10,000) of six-person low-similarity and high-similarity 
culprit-absent lineups under the assumptions of MAX and BEST-REST decision rules. Low-similarity lineups were 
comprised of six random draws from the low-similarity filler distribution [𝑋~𝑁(𝜇 = −1, 𝜎 = 1)] and high-
similarity lineups were comprised of six random draws from the high-similarity filler distribution 
[𝑋~𝑁(𝜇 = 0, 𝜎 = 1)]. We also examined predictions for various other parameter settings and the MAX rule always 
predicted more correct rejections from low-similarity lineups and the BEST-REST rule never predicted a difference 
in correct rejections. 
 

The Assumption of Correlated Memory Signals Does Not Moderate the Critical Test 

Predictions. Many recent attempts to model decision-making on eyewitness lineups assume that 

the probability of being identified is more similar for members within lineups than it is for 

members who are in different (between) lineups. There are several good reasons to assume this 

type of interdependency. For instance, different witnesses adopt different decision criteria. When 

a witness with a lenient criterion encounters a lineup that increases the probability of 

identification for all members of that lineup compared to if that witness had a more stringent 

criterion (Smith et al., 2017). Variations in levels of attention at encoding also leads to the 

prediction that the probability of identification ought to be more similar for members within 

lineups than it is for members between lineups (Wetmore et al., 2017).  

Another reason for predicting that the probability of identification ought to be more 

similar for members within lineups than for members between lineups is because members 

within the same lineup tend to be matched to the culprit on a common set of features, either 

because they were matched to the appearance of the suspect or to the witness’ description of the 

culprit. Either way, their signal strengths should be correlated (Akan et al., 2021; Shen et al., 

2023; Smith et al., 2022; Wixted et al., 2018). The implication is that if one innocent lineup 

member tends to provide a relatively strong match to the witness’ memory for the culprit then the 

other innocent lineup members should also tend to provide a relatively strong match to the 

witness’ memory for the culprit and if one innocent lineup member tends to provide a weak 
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match to the witness’ memory for the culprit, all lineup members should tend to provide a weak 

match to the witness’ memory for the culprit.  

There is little doubt that criterial variance, variations in levels of attention at encoding, 

and correlated signals are all operating in both actual police lineups and in laboratory 

experiments. But all three parameters tend to have similar impacts on modeling outcomes and so 

it would make little sense to instantiate all three of these parameters at once (Smith et al., 2022). 

Because the assumption of correlated memory signals is the most used approach to account for 

lineup dependencies, that is the approach that we consider here.  

To keep the presentation of model predictions depicted in Figures 2 and 3 as 

straightforward as possible, we assumed statistical independence of the lineup signals. However, 

in our supplemental materials file, we generated predictions across a broad range of variations in 

correlated memory signals and the model predictions were consistent with what we found when 

assuming independent signals (see Figure 2 and Figure 3). Across all variations in the correlation 

parameter for both culprit-present and culprit-absent conditions, the relative model consistently 

predicted more rejections of fair lineups than of biased lineups. The absolute model consistently 

predicted more rejections of biased culprit-absent lineups than fair culprit-absent lineups. For 

culprit-present lineups, the absolute model predicted slightly more rejections from biased than 

fair lineups under the assumption of modestly correlated signals and no difference in rejection 

rates for higher levels of correlation. For low-similarity versus high-similarity culprit-absent 

lineups, the absolute model consistently predicted more rejections of low-similarity lineups than 

high-similarity lineups and the relative model consistently predicted no change in rejection rates 

across low-similarity and high-similarity lineups. We provide greater detail in the supplemental 

materials document. 
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Summary of Experiments 

In summary, we determined two situations in which the absolute and relative judgment 

models make contradictory predictions about lineup outcomes. As it turns out, absolute and 

relative judgment models make contradictory predictions for some of the most fundamental 

problems in the identification literature. It is hard to imagine something more fundamental to the 

identification literature than understanding how variations in similarity between culprits and 

innocent-persons affects correct rejection rates. Any model that does not make accurate 

predictions about how variations in absolute signal strength impact correct rejection rates is 

unviable. Likewise, we cannot entertain a decision rule that makes erroneous predictions about 

what impact lineup bias might have on rejection rates. Accordingly, in our first experiment, we 

manipulated the absolute strength of culprit-absent lineups and examined the impact on correct 

rejection rates. In our second experiment, we manipulated lineup composition bias and examined 

whether the pattern of rejection rates was consistent with the absolute model or the relative 

model.  

Experiment 1: Comparing Correct Rejection Rates from Low-Similarity Culprit-Absent 

Lineups and High-Similarity Culprit-Absent Lineups  

Methods 

The preregistration, data analysis plan, anonymized data, and analysis code are available 

here: https://osf.io/t34pr/?view_only=75b9a275488b4b388f42101fece18efd (Smith et al., 2023). 

These experiments were declared exempt by the [redacted for review] Institutional Review 

Board. The primary purpose of our initial experiment was to compare rejection rates for high-

similarity and low-similarity culprit-absent lineups. We conducted an a priori power analysis 

using ANOVA_Power Shiny Application (Lakens & Caldwell, 2021). We used a 2-factor 

https://osf.io/t34pr/?view_only=75b9a275488b4b388f42101fece18efd
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ANOVA design as a proxy for estimating power. This power analysis revealed that a sample size 

of approximately N = 300 would give us 93% power to detect a small effect of filler similarity (f 

= .03). At the time of planning this project, there were no available tools for determining power 

for ROC designs that we were aware of and so we used the ANOVA design as a rule of thumb as 

others have done in the past (e.g., Akan et al., 2021; Ayala & Smith, 2024).  

Participants 

 Participants were 335 MTurk workers that were paid in exchange for their participation. 

We used CloudResearch for additional data management tools (Litman et al., 2017). We 

excluded data from two participants who experienced technological issues and 21 participants 

that demonstrated no ability to discriminate between guilty persons and innocent persons. This 

left us with a final sample of 312 participants. From the 312 participants that we retained in our 

final sample we excluded 24 trials (out of 2496) where participants reported technological issues. 

Out of the final sample, 47% identified as female, 51% identified as male, less than 1% 

identified as non-binary, and less than 1% opted not to report. When asked about their race, 77% 

identified as White, 10% identified as Black/African American, 6% identified as Asian, 4% 

identified as Hispanic or Latino/a, 2% identified as another race, and less than 1% opted not to 

state their race. On average, participants were 42.75 years of age (SD = 12.61). 

Design 

 We used a 2 (Culprit: Present vs. Absent) x 2 (Fillers: High-similarity vs. Low-similarity) 

within-participants design. Each participant watched eight videos and completed eight lineup 

tasks (two in each cell of the design). Before conducting the current study, we created eight 

stimulus groups, each containing eight videos and eight lineups (two for each cell of the design). 

Participants were randomly assigned to one of these eight preset stimulus groups. Within each 
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stimulus group, video and lineup conditions were fixed (e.g., participants assigned to the same 

stimulus group saw the same set of target videos and completed the same type of lineup for each 

target). Furthermore, the proportion of culprit-present and culprit-absent lineups within a given 

block varied from one block to the next. We randomized the proportion of culprit-present lineups 

on each block so that participants could not use their experience on one lineup as basis for what 

decision they should make on a subsequent lineup. 

Culprit-present lineups were comprised of the culprit and five lineup fillers whom the 

witnesses had not seen before. Culprit-absent lineups were comprised of six lineup fillers whom 

the witness had not seen before. We describe the filler selection process in the materials 

subsection, but high-similarity fillers were relatively high in similarity to culprit and low-

similarity fillers were relatively low in similarity to culprit. Culprit-absent lineups did not include 

designated innocent suspects. Instead, we estimated innocent-suspect identification rates by 

dividing the culprit-absent false alarm rate by the nominal lineup size (six). 

Materials 

Videos. Videos were sourced from the eyewitness-identification stimulus database 

(Fitzgerald et al., 2023). We used a total of 16 simulated crime videos. Each video depicted a 

single individual entering a room, stealing either a laptop or an iPad out of a bag, and then 

leaving. Video duration ranged from 23 seconds to 37 seconds. For each video there is a clear 

view of the culprit’s face that lasts for approximately 10 seconds.  

Lineups. All lineups were presented simultaneously and consisted of six faces presented 

to participants in a 2 rows x 3 columns photo array. Culprit-present lineups were comprised of 

the culprit from the simulated crime video and five lineup fillers. Culprit-absent lineups were 

comprised of six lineup fillers. Lineup positions were randomized anew for each participant and 
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for culprit-present lineups each of the six lineup fillers had a 5/6 chance as being included in the 

culprit-present lineup.  

We used the culprit photos from the Eyewitness Lineup Identity database (Fitzgerald et 

al., 2023), which includes mugshots created with a recording booth on loan from the Video 

Identification Parade Electronic Recording (VIPER) Bureau, West Yorkshire Police, England. 

Images in the database were not quality assured by the VIPER Bureau, and the authors accept 

full responsibility for their quality. The people depicted in the database are actors, not actual 

culprits or lineup members in real criminal cases. Filler photos were from the Florida Mugshot 

Database.  

Because our objective was to manipulate absolute similarity independently of relative 

similarity, we took a somewhat unique approach to constructing lineups. We looked through the 

culprit pool to find pairs of culprits who fit the same vague description (e.g., white male, early 

20s, with brown hair). We created eight of these culprit pairs (i.e., A – A', …, H – H'). We then 

selected high-similarity fillers for each of the 16 culprits (A, …, H'). To that end, we instructed a 

team of research assistants to find six fillers that both matched the description of the culprit and 

who generally resembled the culprit. To create low-similarity lineups, we swapped the fillers for 

Culprit A with the fillers for Culprit A', the fillers for Culprit B with the fillers for Culprit B', and 

so on and so forth. This way we ensured that the similarity among individuals within a lineup 

remained constant across the high-similarity and low-similarity conditions. Sample stimuli for 

two targets are presented in Figure 4. 
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Figure 4: Examples of High-Similarity and Low-Similarity Target-Present and Target-Absent 

Lineups 

 

 
Procedure 

We used the Qualtrics survey platform to facilitate the current study. Participants were 

only eligible if they: (1) were over 18 years of age, (2) lived in the United States, (3) were fluent 

in English, (4) had at least an 80% approval rate on at least 100 previous MTurk tasks, and (5) 

were using a computer or laptop to complete the task. Upon completing informed consent, 

participants were asked if they agreed to pay attention and follow instructions throughout the 

study. If they declined, they were instructed that they were not eligible to participate. 

Subsequently, the participants completed two simple bot-check questions to confirm their 

humanity, in which they were asked to select a specific letter from a list of multiple-choice 

options. Failure resulted in dismissal from the experiment. 

To limit the amount of time that it took to complete the survey, we grouped the project 

into four blocks each containing two videos, a single filler task, and two lineups. The order in 

which the blocks were displayed to participants was randomized across participants, but the 

order of videos and lineups within each block was fixed. We constrained blocks to always 

contain two culprits who did not fit the same description so that witnesses would know which 
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trace was being probed by which lineup. For example, if the first culprit in a block was a White 

Male the second culprit might have been a Black Female.  

 On each block, participants were provided with basic task instructions. They were then 

asked to pay careful attention to each of the two videos as they would be presented with lineups 

related to these videos at a later point. After watching the two simulated-crime videos, 

participants completed a one-minute anagram-solving task. After the anagram task participants 

were instructed that they would complete lineups for each of the two persons that they saw 

before the anagrams task. Further, participants were admonished that the person from the video 

may or may not be present in the lineup and were asked to identify that person if present and 

otherwise to select “Not Present”. Following each identification decision, participants were 

asked to express their level of confidence on a scale from 0% (not at all) to 100% (completely) in 

10-point increments. Once they were done with both lineups, they were asked to report any 

technical difficulties they experienced with the videos or the lineups.  

Results 

Although retrospective model fit is not an appropriate arbiter for determining which of 

two non-nested decision models has superior construct validity, it is appropriate for comparing 

the relative fit of nested models (Dobbins, 2023). Accordingly, we fit two versions of the 

absolute model to the data to determine whether we had produced the expected finding that low-

similarity lineups better discriminate guilty-suspect identifications from innocent-suspect 

identifications than do high-similarity lineups (e.g., Carlson et al., 2023). In the first model, we 

permitted discriminability to vary across low-similarity and high-similarity lineups and in the 

second model, we constrained discriminability to be equal across our manipulation of similarity. 

We then compared the relative fit of these two nested models. After establishing that our 
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manipulation had its intended impact, we then present the results of our critical test assessing 

whether low-similarity lineups led to more correct rejections than did high-similarity lineups. 

Although both the absolute and relative models predict better discriminability for low-similarity 

lineups, only the absolute model predicts more correct rejections for low-similarity lineups. The 

relative model predicts equivalent correct rejection rates for low-similarity and high-similarity 

lineups. In the process of analyzing the data from both Experiment 1 and Experiment 2, we used 

R (R Core Team, 2021), RStudio (RStudio Team, 2022), Tidyverse (Wickham et al., 2019), and 

lme4 (Bates et al., 2015). 

Assessing the Impact of Filler Similarity on Suspect-Identification Discriminability 

Following standard practice, we binned affirmative identifications into four confidence 

bins (90% - 100%, 70% - 80%, 50% - 60%, and 0% - 40%) and included a fifth bin comprised of 

lineup rejections collapsed over all levels of confidence (e.g., Smith et al., 2018; Wixted et al., 

2018). High and low similarity lineups each had 12 degrees of freedom: culprit identifications at 

each confidence bin [4], culprit-present filler identifications at each confidence bin [4], and 

culprit-absent mistaken identifications at each confidence bin [4]. Hence, there were 24 degrees 

of freedom in total. The absolute model included 10 free parameters. We fixed the location of the 

low-similarity filler distribution (𝜇 = 0) and permitted the high-similarity filler distribution 

(𝜇Filler) and the culprit distribution (𝜇culprit) to vary, but we assumed that the location of the 

culprit distribution was constant across low-similarity and high-similarity lineups. We also 

estimated locations for the eight confidence criteria, four for the low-similarity lineups and four 

for the high-similarity lineups. Hence, the unconstrained model included 10 free parameters and 

14 degrees of freedom. For simplicity, we assumed that the memory signals were uncorrelated. 

We made this assumption because by design low-similarity fillers were as correlated with other 
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low-similarity fillers as high-similarity fillers were with other high-similarity fillers and therefore 

there was little to be gained from adding an additional parameter to the model.  

The best-fitting parameter estimates for the unconstrained model are summarized in Table 

1 and Table 2 contrasts observed and predicted proportions. The unconstrained model provided a 

good fit to the data, 𝜒.(14) = 18.50, 𝑝 = .18. The good fit between the model and the observed 

data is further evidenced by the Receiver Operating Characteristic (ROC) curves depicted in 

Figure 5. The operating points in Figure 5 represent the empirical data, and the curves represent 

the predictions of the MAX model. As expected, the low-similarity lineup better discriminated 

between guilty-suspect identifications and innocent-suspect identifications than did the high-

similarity lineup. To test whether this difference was significant we fit a simpler model in which 

we constrained the distance between the culprit and filler distributions to be equivalent across 

low-similarity and high-similarity lineups. The constrained model provided a poor absolute fit to 

the data, 𝜒.(15) = 79.89, 𝑝 < .001, and a significantly worse fit than the unconstrained model, 

𝜒.(1) = 61.39, 𝑝 < 	 .001.4 We also fit two versions of the relative model to determine whether 

it also supported the conclusion that low-similarity lineups have better discriminability than 

high-similarity lineups. We refer the interested reader to supplemental materials. 

 

 

 

 

 
4 Consistent with previous modeling of lineup data (see also Akan et al., 2021; Shen et al., 2023; Smith et al., 2022), 
we combined the data from all participants and fit the model at the aggregate because there were not enough data 
points to fit the model at the level of individual participants. 
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Table 1: Best-Fitting Parameter Estimates of the Absolute model to Low- and High-Similarity 

Lineups 

Parameter Low-Similarity Lineup High-Similarity Lineup 
𝜇culprit 2.25 2.25 
𝜇/01123 0Fixed 0.64 
𝜆45#655 2.82 3.10 
𝜆75#85 2.25 2.55 
𝜆95#:5 1.90 2.20 
𝜆5#;5 1.63 1.89 

 

Table 2: Observed and Predicted Values for Low-Similarity and High-Similarity Culprit-

Present and Culprit-Absent Lineups 

 Culprit Present  Culprit Absent 

Lineup Hit 
Culprit FA Filler False 

Rejection  
FA 

Innocent 
Suspect 

FA Filler Correct 
Rejection 

Low Similarity        
90-100 .28 (.28) .01 (.01)   .00 (.00) .01 (.01)  
70-100 .49 (.49) .03 (.04)   .01 (.01) .07 (.06)  
50-100 .64 (.62) .06 (.07)   .02 (.03) .12 (.13)  
0-100 .71 (.70) .09 (.10) .20 (.20)  .04 (.05) .22 (.23) .73 (.73) 

High Similarity        
90-100 .20 (.20) .02 (.03)   .01 (.01) .05 (.03)  
70-100 .38 (.37) .09 (.10)   .03 (.03) .14 (.13)  
50-100 .50 (.48) .15 (.17)   .05 (.05)  .26 (.26)  
0-100 .59 (.56) .21 (.24) .19 (.20)  .08 (.08) .40 (.41) .53 (.51) 

Note. Number in parentheses are predicted. FA = False Alarm. 
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Figure 5: Receiver Operating Characteristic (ROC) Curves Depicting the Fit of the Absolute 

Model to High-Similarity and Low-Similarity Lineups 

 
Note. The operating points depict the empirical data, and the curves depict the predictions of the 
absolute model. 
 
Critical Test #1: Do Low-Similarity Lineups Lead to More Correct Rejections than High-

Similarity Lineups? 

 To test the hypothesis that variations in absolute signal strength would affect correct 

rejection rates, we fit a random intercepts probit regression model to the culprit-absent data. As 

predicted by the absolute model, the low-similarity lineup led to more correct rejections (73%) 

than did the high-similarity lineup (53%), B = 0.80, SE = .09, z = 8.63, p < .001. Next, we fit a 

random intercepts linear regression model to determine whether low-similarity rejections were 

made with higher confidence, on average, than were high-similarity rejections. As predicted by 

the absolute model, low-similarity rejections were made with greater confidence (M = 73.79) 

than were high-similarity rejections (M = 64.72), B = 9.07, SE = 1.42, t(556.63) = 6.41, p < .001.  
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Experiment 2: Comparing Rejection Rates for Fair and Biased Lineups 

The results from Experiment 1 clearly contradict the predictions of the relative model. 

Increasing the similarity of lineup fillers to the culprit increased match-to-memory strength on 

culprit-absent lineups, leading to a decrease in correct rejections. That increasing the similarity 

between innocent persons and the culprit would lead to a decrease in correct rejection rates is 

hardly surprising. What is much more surprising is that the relative model rose to prominence in 

the identification literature despite predicting that correct rejection rates would be invariant to 

changes in absolute signal strength. These data refute any model that assumes witness decision-

making is invariant to changes in absolute signal strength.  

 Conversely, the data from Experiment 1 were consistent with the predictions of the 

absolute model. Decreasing the similarity between the culprit and innocent persons increased 

correct rejections and the level of confidence that witnesses expressed in their rejection 

decisions. But this does not necessarily mean that the absolute model is superior to the relative 

model. A pure relative model is clearly unviable, but it is possible that a pure absolute model will 

also prove unviable. Perhaps the absolute model was unfairly advantaged on an initial test in 

which we manipulated absolute signal strength.  

For Experiment 2, we contrasted the absolute and relative models with a manipulation of 

lineup composition bias. Lineup composition bias affects both relative and absolute strength. 

Because biased lineup fillers are less similar to the suspect than are fair lineup fillers, the 

expected BEST-REST score on a biased lineup exceeds the expected BEST-REST score on a fair 

lineup and the relative model predicts more rejections of fair lineups than of biased lineups. But 

because biased fillers will typically be weaker in absolute strength than fair fillers, the expected 
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strength of the MAX signal will typically be weaker on a biased lineup compared to a fair lineup 

and so the absolute model predicts more rejections of biased lineups than of fair lineups.  

Methods 

The preregistration, data analysis plan, anonymized data, and analysis code are available 

here: https://osf.io/t34pr/?view_only=75b9a275488b4b388f42101fece18efd (Smith et al., 2023). 

This experiment was declared exempt by the [redacted for review] Institutional Review Board. 

The primary purpose of Experiment 2 was to compare rejection rates between fair and biased 

lineups. However, we decided to collect enough data to have 80% power to detect a 

discriminability difference between fair and biased lineups. We conducted an a priori power 

analysis using ANOVA_Power Shiny Application (Lakens & Caldwell, 2021). We used a 2 x 2 

ANOVA design as a proxy for estimating power. The a priori power analysis revealed that a 

sample size of approximately N = 400 was required to detect a small interaction effect between 

target-presence and lineup fairness (f = .02).  

Participants 

Participants were 436 MTurk workers (via CloudResearch; Litman et al., 2017) that were 

paid in exchange for their participation. One participant was excluded from the sample due to 

technical issues and 54 participants were excluded because they demonstrated no ability to 

discriminate between guilty persons and innocent persons. The final sample included a total of 

381 participants. From those 381 participants, 58 trials (out of 6096) were dropped due to 

technological issues. From the final sample, 44% self-reported as female, 54% as male, 1% as 

non-binary, and 1% opted not to report. Participants were mostly White (75%), with 12% 

identifying as Black/African American, 5% identifying as Hispanic or Latino/a, 6% identifying 

https://osf.io/t34pr/?view_only=75b9a275488b4b388f42101fece18efd
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as Asian, 1% identifying as a different group, and 1% opting to not state their race. On average, 

participants were 40.81 years of age (SD = 11.74). 

Design 

We used a 2 (Target: Present vs. Absent) x 2 (Lineup: Fair vs. Biased) within-participants 

design. Participants were randomly assigned to one of eight stimulus groups. Each stimulus 

group viewed a fixed set of culprit-present/culprit-absent and biased/fair lineups (four from each 

cell in the 2 x 2 experimental design). Within each stimulus group, lineups were split into four 

blocks of four videos, one filler task, and four lineups. Conditions were randomized for each 

stimulus set across the entire survey rather than within each block, so that participants would not 

be able to use their judgments on earlier lineups to inform their decision making for subsequent 

decisions.  

Culprit-present lineups were comprised of the culprit and five lineup fillers whom the 

witness had not seen before. Culprit-absent lineups were comprised of six lineup fillers whom 

the witness had not seen before. The fillers in fair lineups were relatively high in similarity to the 

culprit and the fillers in biased lineups were relatively low in similarity to the culprit. The 

innocent suspects on biased lineups were randomly sampled from the high-similarity filler pool. 

This sampling process was done anew for each participant. Fair culprit-absent lineups did not 

include designated innocent suspects. Instead, we estimated innocent-suspect identification rates 

by dividing the culprit-absent false alarm rate by the nominal lineup size (six). We describe the 

lineups in greater detail in the materials section.  

Materials 

Videos. Videos were sourced from the Eyewitness Lineup Identity database (Fitzgerald et 

al., 2023). We used a total of 32 simulated crime videos. Each video depicted a single individual 
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entering a room, stealing either a laptop or an iPad out of a bag, and then leaving. Video duration 

ranged from 23 seconds to 37 seconds. In each video there was a clear view of the culprit’s face 

that lasted for approximately 10 seconds. Each participant viewed 16 lineup videos and 

completed 16 lineups. The 32 sets of stimuli that we used in Experiment 2 included the 16 sets 

from Experiment 1 plus 16 additional sets. 

Lineups. All lineups were presented simultaneously and consisted of six faces presented 

to participants in a 2 rows x 3 columns photo array. The positions of these photos were 

randomized anew for each participant. We used culprit photos from the Eyewitness Lineup 

Identity database (Fitzgerald et al., 2023). All filler photos were from the Florida Mugshot 

Database. All lineup photos were edited to remove backgrounds and clothing (e.g., shirt collars) 

and culprit photographs were degraded so that they had similar resolution to that of filler 

photographs. 

We used a total of 128 lineups, four versions for each of the 32 simulated-crime videos: 

fair culprit present, fair culprit absent, biased culprit present, and biased culprit absent. After 

selecting the 32 culprits, we then selected six fair fillers for each culprit. To that end, we 

instructed a team of research assistants to find six fillers that both matched the description of the 

culprit and who generally resembled the culprit. For the biased fillers, we told research assistants 

the race and sex of the culprit and had them find filler photographs based only on those criteria. 

The research team then reviewed their selections and removed any fillers that coincidentally 

resembled the culprit.  

Fair culprit-absent lineups were comprised of six fair fillers. For fair culprit-present 

lineups Qualtrics randomly removed one of the six fillers and replaced that person with the 

culprit. Biased culprit-absent lineups were comprised of five biased fillers and one fair filler that 
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Qualtrics randomly selected for inclusion. Finally, biased culprit-present lineups were comprised 

of the culprit and the five biased fillers. All lineup photos were edited to remove backgrounds 

and clothing (e.g., shirt collars) and culprit photographs were degraded so that their resolution 

was similar to that of the filler photographs. Where applicable, the random selection of fillers for 

inclusion or exclusion on lineups was completed anew for each participant and each filler was 

included / excluded about equally as often as the next. Figure 6 provides examples of fair and 

biased culprit-present and culprit-absent lineups. 

Figure 6  

Examples of Fair and Biased Target-Present (TP) and Target-Absent (TA) Lineups 

 
Procedure 

We used the Qualtrics survey platform to facilitate the current study. Participants were 

only eligible if they: (1) were over 18 years of age, (2) lived in the United States, (3) were fluent 

in English, (4) had at least an 80% approval rate on at least 100 previous MTurk tasks, and (5) 

were using a computer or laptop to complete the task. Upon completing informed consent, 
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participants were asked if they agreed to pay attention and follow instructions throughout the 

study. If they declined, they were instructed that they were not eligible to participate. 

Subsequently, the participants completed two simple bot check questions to confirm their 

humanity, in which they were asked to select a specific letter from a list of multiple-choice 

options. Failure resulted in dismissal from the experiment. 

The procedure was split into four blocks and the order in which blocks appeared was 

randomized across participants. Each block was comprised of four simulated crime videos, a 

filler task, and four lineup procedures. On each block, participants were provided with basic task 

instructions. They were then asked to pay careful attention to each of the four videos as they 

would be presented with lineups related to these videos at a later point. After watching the four 

simulated-crime videos, participants completed a one-minute anagram-solving task. After the 

anagram task participants were instructed that they would complete lineups for each of the four 

persons that they saw before the anagrams task. Prior to each lineup, participants were 

admonished that the person from the video may or may not be present in the lineup and were 

asked to identify that person if present and otherwise to select “Not Present”. Following each 

identification decision, participants were asked to express their level of confidence on a scale 

from 0% (not at all) to 100% (completely) in 10-point increments. Once they were done with 

both lineups, they were asked to report any technical difficulties they experienced with the 

videos or the lineups. At the end of each block, participants were asked to indicate whether they 

experienced any technological difficulties and if so, to explain as clearly as possible. After 

completing all sixteen lineups, participants completed some basic demographic questions. They 

were then thanked for their participation and debriefed.  
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To limit the likelihood that participants would be confused about what trace was being 

probed by which lineup, each block was comprised of four target persons that varied on physical 

characteristics to the extent that they were unlikely to be confused. For example, a given block of 

culprits might have included a White Male, a White Female, a Black Male, and a Hispanic 

Female. In addition, the order in which lineups were displayed was fixed to the same order as the 

simulated crime videos.  

Results 

 As in Experiment 1, we started by fitting two versions of the absolute model to the data to 

determine whether we had produced the expected finding that fair lineups better discriminate 

guilty-suspect identifications from innocent-suspect identifications than do biased lineups (e.g., 

Clark, 2012; Lindsay & Wells, 1980; Smith et al., 2017; Smith et al., 2018) In the first model, we 

permitted discriminability to vary across fair and biased lineups and in the second model, we 

constrained discriminability to be equal across our manipulation of lineup composition bias. We 

then compared the relative fit of these two nested models. After establishing that our 

manipulation had its intended impact, we then present the results of our critical test assessing 

whether fair lineups led to more rejections than biased lineups.  

Assessing the Impact of Lineup Composition Bias on Suspect-Identification 

Discriminability 

We binned affirmative identifications into four confidence bins (90% - 100%, 70% - 

80%, 50% - 60%, and 0% - 40%) and included a fifth bin comprised of lineup rejections 

collapsed over all levels of confidence (Akan et al., 2021; Smith et al., 2022). The fair lineup had 

12 degrees of freedom in total: culprit identifications at each confidence bin [4], culprit-present 

filler identifications at each confidence bin [4], and culprit-absent mistaken identifications at 
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each confidence bin [4]. For biased lineups the fillers were drawn from a weaker strength 

distribution than the innocent suspect and so we distinguished between culprit-absent mistaken 

identifications of innocent suspects and culprit-absent mistaken identifications of fillers. As a 

result, the biased lineup had 16 degrees of freedom: culprit identifications at each confidence bin 

[4], culprit-present filler identifications at each confidence bin [4], innocent suspect 

identifications at each confidence bin [4], and culprit-absent filler identifications at each 

confidence bin [4]. Hence, there were 28 degrees of freedom total. 

 The absolute model included 11 free parameters: two location parameters, a correlation 

parameter, and eight decision criteria [four criteria for the biased lineups and four criteria for the 

fair lineups]. We assumed that all innocent persons on the fair lineups were drawn from a 

standard normal distribution (𝜇 = 0, 𝜎 = 1). Because the innocent suspects on biased lineups 

were drawn from the same population of faces as the fair fillers, we assumed that they were also 

drawn from the standard normal distribution (𝜇 = 0, 𝜎 = 1). We estimated the location of the 

culprit distribution (𝜇culprit), but because we used the same culprits for fair and biased lineups, 

we did not permit the culprit location to vary across the two lineup types. Given that we selected 

as biased fillers, persons who we expected to provide weaker matches to memory than the fair 

fillers, we also permitted the location of the biased filler distribution to vary (𝜇Filler). Finally, 

because all of the innocent persons included in the fair lineups were selected because they 

provided a good match to the description of the culprit, we expected that their match-to-memory 

values would be correlated, and we estimated the strength of that correlation (𝜌) (Akan et al., 

2021; Shen et al., 2022; Smith et al., 2022; Wixted et al., 2018). Hence, the unconstrained model 

included 11 free parameters and 17 degrees of freedom.  
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 In Experiment 1, we assumed that the memory signals emanating from lineup members 

were uncorrelated because, by design, the low-similarity filler signals were as correlated with 

other low-similarity filler signals as the high-similarity filler signals were with other high-

similarity filler signals. But in Experiment 2, we would expect higher signal correlations among 

fair fillers than we would among biased fillers, and we would also expect higher culprit-to-filler 

signal correlations in fair lineups and than in biased lineups. This is because, whereas the fair 

fillers were all selected because they matched the general appearance of the culprit, the biased 

fillers were selected more haphazardly. Anecdotally, it is evident from a cursory look at the 

sample stimuli in Figure 6 that there is much more variability in the appearances of biased fillers 

compared to the appearances of fair fillers (i.e., the signals are less strongly correlated). This is 

important because as the strength of correlations among signals increases, so too does the 

potential for lineups to discriminate between guilty-suspects and innocent-suspects. Accordingly, 

we permitted the memory signals for fair fillers to take on non-zero correlations and fixed the 

correlation parameters for biased lineup fillers to zero (Smith et al., 2022; see also Akan et al., 

2021). The correlation parameter specified both the degree of signal correlations among fair 

fillers and the degree of correlation between any given fair filler and the culprit.  

The best-fitting parameter estimates for the unconstrained model are summarized in Table 

3 and Table 4 contrasts observed and predicted proportions. The fit between the unconstrained 

model and the data was less than optimal, 𝜒.(17) = 33.09, 𝑝 = .01. However, it is clear from 

Figure 7 that the predictions of the absolute model (depicted by the ROC curves) are capturing 

the major trends in the empirical data (depicted by the operating points). Likewise, Table 4 

shows that the observed and predicted proportions are very similar. Critically, we replicated the 

typical finding that fair lineups better discriminate between guilty-suspect identifications and 
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innocent-suspect identifications than do biased lineups. This is evidenced by the fact that the fair 

lineup ROC curve dominated the biased lineup ROC curve over their common region in the 

ROC space. Given that we fixed the distance between the culprit and innocent-suspect 

distributions to be equivalent for fair and biased lineups, the observed difference might come 

across as surprising. The difference between the ROC curves depicted in Figure 7 is attributable 

to the fact that the memory signals on fair lineups are more strongly correlated with one another 

than are the memory signals on biased lineups. The result is that fair lineups are better able to 

discriminate between guilty-suspect identifications and innocent-suspect identifications than are 

biased lineups. When we constrained the signal correlations to be equivalent for fair and biased 

lineups, the model provided a poor absolute fit to the data, 𝜒.(18) = 50.83, 𝑝 < .001, and a 

significantly worse fit than the unconstrained model, 𝜒.(1) = 17.74, 𝑝 < 	 .001. As in 

Experiment 1, we also fit two versions of the relative model to determine whether it also 

supported the conclusion that low-similarity lineups have better discriminability than high-

similarity lineups. We refer the interested reader to supplemental materials. 

Table 3: Best-Fitting Parameter Estimates of the MAX model to Fair and Biased Lineups 

Parameter  Fair Lineup Biased Lineup 
𝜇culprit 0.84 0.84 
𝜇<= 0fixed  0fixed 

𝜇Filler 0fixed -1.30 
𝜌 0.36 0fixed 

𝜆45#655 1.88 1.71 
𝜆75#85 1.46 1.14 
𝜆95#:5 1.18 0.78 
𝜆5#;5 0.88 0.51 

 

 

 



EYEWITNESS DECISION-MAKING 39 

Table 4: Observed and Predicted Values for Fair and Biased Culprit-Present and Culprit-

Absent Lineups 

 Culprit Present  Culprit Absent 
Lineup Hit 

Culprit 
FA Filler False 

Rejection 
 FA 

Innocent 
Suspect 

FA Filler Correct 
Rejection 

Fair        
90-100 .10 (.10) .03 (.04)   .01 (.01) .05 (.04)  
70-100 .22 (.22) .11 (.14)   .03 (.03) .17 (.15)  
50-100 .31 (.31) .21 (.24)   .06 (.06) .31 (.29)  
0-100 .41 (.40) .33 (.36) .26 (.25)  .10 (.10) .48 (.48) .42 (.42) 
Biased        
90-100 .19 (.19) .01 (.01)   .04 (.04) .02 (.01)  
70-100 .37 (.38) .04 (.03)   .12 (.13) .06 (.03)  
50-100 .51 (.51) .07 (.05)   .20 (.21) .10 (.08)  
0-100 .61 (.60) .10 (.09) .29 (.31)  .27 (.29) .14 (.13) .59 (.58) 

Note. Number in parentheses are predicted. FA = False Alarm. 
 
Figure 7: Receiver Operating Characteristic (ROC) Curves Depicting the Fit of the Absolute 

Model to Fair and Biased Lineups 

  

Note. The operating points depict the empirical data, and the curves depict the predictions of the 
absolute model. 
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Critical Test #2: Do Biased Lineups Lead to More Correct Rejections than Fair Lineups? 

 To test whether biased or fair lineups lead to more rejections, we fit a random intercepts 

probit regression model with a two-way interaction term between culprit-presence and lineup 

bias. As predicted by the absolute model, there was a two-way interaction between culprit 

presence and lineup bias, B = .39, SE = .07, z = 5.41, p < .001. Simple slope analyses revealed 

that biased lineups led to more rejections of culprit-absent lineups (59%) than did fair lineups 

(42%), B = .50, SE = .05, z = 10.08, p < .001. Biased lineups also led to more rejections from 

culprit-present lineups (29%) than did fair lineups (26%), however the effect size was smaller in 

the present condition compared to the absent condition, B = .11, SE = .05, z = 2.13, p = .03. 

Consistent with the predictions of the absolute model and inconsistent with the predictions of the 

relative model, biased lineups led to more rejections than fair lineups on both culprit-absent 

lineups and culprit-present lineups.  

 Next, we examined whether confidence ratings were consistent with the predictions of 

the absolute model or the relative model. To that end, we fit random-intercepts linear regression 

models separately to the confidence ratings associated with lineup rejections and suspect 

identifications. Starting with lineup rejections, the two-way interaction between culprit presence 

and lineup bias was marginally significant, B = 3.34, SE = 1.78, t(2074.81) = 1.90, p = .06. On 

average, biased culprit-absent lineups were rejected with greater confidence (M = 69.56%) than 

were fair culprit-absent lineups (M = 59.33%), B = 10.22, SE = 1.05, t(2061.89) = 9.79, p < .001. 

Likewise, biased culprit-present lineups were rejected with greater confidence (M = 63.70) than 

were fair lineups (M = 56.82%), however the effect size was smaller in the present condition 

compared to the absent condition, B = 6.88, SE = 1.42, t(2083.72) = 4.86, p < .001. Once again, 
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the confidence ratings associated with lineup rejections were consistent with the predictions of 

the absolute model and inconsistent with the predictions of the relative model. 

 Finally, we examined confidence ratings for suspect identifications. The two-way 

interaction between culprit-presence and lineup bias was significant, B = 3.72, SE = 1.30, 

t(3344.68) = 2.85, p = .004. On average, innocent-suspect identifications were made with greater 

confidence from biased lineups (M = 57.67%) compared to fair lineups (M = 53.28%), B = 4.40, 

SE = 1.02, t(3348.86) = 4.33, p < .001. Culprit identifications were also made with greater 

confidence from biased lineups (M = 67.07) compared to fair lineups (M = 58.96), however the 

effect size was larger compared to innocent-suspect identifications, B = 8.12, SE = 0.82, 

t(3342.87) = 9.89, p < .001. Expressions of confidence following suspect identifications were 

consistent with the relative model and inconsistent with the absolute model. 

General Discussion 

 The present work provides overwhelming evidence against the relative model and against 

any model that assumes witness decision-making is unaffected by changes in absolute signal 

strength. In the first of two experiments, we showed that increasing the absolute match-to-

memory strength of culprit-absent lineup members decreased correct-rejection rates and 

confidence in correct rejections. Both patterns are consistent with the absolute model and 

inconsistent with the relative model. In the second experiment, witnesses were more likely to 

reject biased lineups than fair lineups. Witnesses were also more confident in their rejections of 

biased lineups compared to their rejections of fair lineups. Both patterns are consistent with the 

predictions of the absolute model and inconsistent with the predictions of the relative model. In 

fact, across both experiments there was only a single piece of evidence that was consistent with 

the predictions of the relative model and inconsistent with the predictions of the absolute model: 
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witnesses expressed greater confidence in suspect identifications from biased lineups compared 

to fair lineups. At the aggregate, the present work suggests that witnesses not only take absolute 

signal strength into account, but that witnesses prioritize absolute signal strength. 

 It would be difficult to overstate the implications of these findings for theoretical models 

of eyewitness decision-making. Over the past five years, the relative model (AKA the BEST-

REST or ensemble model) has risen to prominence in the identification literature (e.g., Shen et 

al., 2023; Wixted et al., 2018). It has risen to prominence based on its ability to retrospectively fit 

suspect-identification data. But until now, few had considered what this model predicts in 

foresight. The relative model predicts that so long as relative signal strength is constant, 

variations in absolute signal strength will have no impact on witness decision-making. In 

Experiment 1, we manipulated the absolute signal strength of culprit-absent lineup members 

while holding relative signal strength constant and found that witnesses were more likely to 

reject a low-similarity culprit-absent lineup than a high-similarity culprit-absent lineup. This 

simple and intuitive pattern of results is at odds with any model that assumes absolute signal 

strength has no impact on witness decision-making. To bring the relative model in line with the 

data from Experiment 1, one would need to assume that when witnesses encountered high-

similarity lineups, they lowered their criteria for making affirmative identification decisions. But 

by making that assumption one is tacitly conceding that witness decision-making is influenced 

by absolute signal strength which contradicts the most fundamental assumption of the relative 

model—namely, that witness decision-making is based only on relative strength. 

 The data from Experiment 2 also contradict the predictions of the relative model. The 

relative model predicts that fair lineups should lead to more rejections of both culprit-present and 

culprit-absent lineups when compared to biased lineups. Instead, as predicted by the absolute 
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model, results revealed that biased lineups led to more rejections on both culprit-absent and 

culprit-present lineups. Witness confidence was also higher for rejections of biased lineups 

compared to rejections of fair lineups, which is also the opposite of what the relative model 

predicts. To bring the relative model in line with the data from Experiment 2, one would need to 

assume that when witnesses encountered lineups where all members were relatively similar in 

strength, they respond by lowering their criterion for identification. But at that point the decision 

rule becomes self-contradictory. The relative model assumes that witnesses use the BEST-REST 

score as the bases for deciding whether to identify or reject. Witnesses interpret a relatively large 

BEST-REST score to imply that the BEST-matching lineup member is the culprit and a relatively 

small BEST-REST score to imply culprit absence. If we were to also assume that witnesses adopt 

more lenient criteria when the BEST-REST score is small compared to when the BEST-REST 

score is large, we would be assuming that a small BEST-REST score implies both culprit 

presence and culprit absence. After all, a witness would not respond to a piece of evidence by 

lowering their criterion unless they assumed that variable implied culprit presence. The observed 

data pattern in Experiment 2 is incompatible with a pure relative-judgment model.  

 There was one pattern that was consistent with the predictions of the relative model and 

inconsistent with the predictions of the absolute model—suspect-identification confidence was 

higher on biased lineups than on fair lineups (see also Charman et al., 2011; Horry & Brewer, 

2016). This suggests that when rendering confidence ratings for suspect identifications, 

witnesses considered not only the signal strength of the suspect, but also the signal strengths of 

the lineup members that they did not identify, which is exactly what the relative model predicts 

(Shen et al., 2023; Wixted et al., 2018). The absolute model does not predict this pattern but 

could be made to fit this pattern retrospectively by assuming that witnesses lower their 
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confidence criteria when the discrepancy between the MAX signal strength and the remaining 

signal strengths is large. But that retrospective accommodation concedes that witness confidence 

ratings are influenced by relative signal strength.  

 Overall, the present work suggests that witness decision-making is driven primarily by 

absolute signal strength. Yet, the increased confidence in suspect identifications from biased 

lineups that we observed in Experiment 2 suggests that in at least some situations witnesses 

make use of relative signal strength (see also Charman et al., 2011; Horry & Brewer, 2016). This 

suggests that witnesses might make use of both absolute and relative signal strength (Clark, 

2003; Clark et al., 2011). One possibility is that witnesses use absolute-judgment rules as part of 

their primary processing strategy and revert to relative-judgment strategies for more deliberative 

or effortful tasks like rendering confidence judgments. This is consistent with how some 

accumulator models distinguish between choices and confidence judgments. Accumulator 

models assume that as a respondent completes a choice task, evidence accumulates separately for 

each response option. Once the accumulated evidence for one of the response options passes the 

respondent’s criterion, the respondent selects that option (Brown & Heathcote, 2008; Vickers, 

1970). Confidence judgments are then post-computed by comparing the difference in 

accumulated evidence for chosen and unchosen response options (Smith & Vickers, 1988; Van 

Zandt, 2000; and see Horry & Brewer, 2016 for a thorough review). This suggests that choices 

are based on absolute evidence and confidence in those choices is based on relative evidence. 

 But not all confidence judgments are based on relative evidence. Confidence judgments 

that follow lineup rejections appear to be driven by absolute signal strength. Indeed, we found 

that rejections of biased lineups were made with higher confidence than were rejections of fair 

lineups (see also Horry & Brewer, 2016). Why would witnesses rely on relative signal strength 



EYEWITNESS DECISION-MAKING 45 

when expressing confidence judgments in affirmative responses, but rely on absolute strength 

when rendering confidence judgments in rejection responses? It is possible that witnesses use a 

different frame of reference when rendering confidence judgments for affirmative identifications 

versus lineup rejections (Brainerd et al., 2022; Horry & Brewer, 2016; Sakamoto & Miyoshi, 

2024). Following an affirmative identification, what might be most salient to the witness are the 

photographs of the other lineup members that the witness could have identified but did not 

identify. But following a rejection response, what might be most salient to the witness is her 

mental representation for the culprit and the discrepancy between that mental representation and 

the MAX lineup member (Horry & Brewer, 2016; Smith et al., 2023). On this point it is 

noteworthy that the first formal model of eyewitness decision-making assumed that affirmative 

identifications were based on a combination of absolute and relative signal strength, but lineup 

rejections were driven entirely by absolute signal strength (Clark, 2003).  

 One could also imagine a witness starting the identification-making process with an 

absolute-judgment strategy and reverting to a relative-judgment strategy if the task proved 

difficult (e.g., Charman & Wells, 2007; Dunning & Perretta, 2002; Dunning & Stern, 1994). This 

might explain why some experiments manipulating lineup bias produce patterns that are more in 

line with the predictions of relative-judgment models (e.g., Colloff et al., 2016; Smith et al., 

2022). As discriminability decreases, witnesses might become increasingly inclined to adopt 

relative-judgment strategies. Alternatively, there are different ways to create biased lineups and it 

is unclear that each of these variations impacts decision-making in the same way. We used as 

culprits, individuals who were relatively low in distinctiveness and then manipulated fillers to be 

as similar to the culprit as the innocent suspect (fair lineup) or less similar to the culprit than the 

innocent suspect (biased lineup). An alternative approach (for a different applied problem) is to 
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select culprits with distinctive features (e.g., a black eye), photoshop that same feature onto the 

innocent suspect and then manipulate whether fillers possess that feature or not (e.g., Colloff et 

al., 2016; Smith et al., 2022). The literature has not typically distinguished between these and 

other approaches to manipulating lineup bias, but it is unclear that they would impact decision-

making in the same way. After all, if a witness views a lineup where one member has the exact 

same black eye as the culprit, should she not be able to infer that this person must be the culprit? 

If that person is not the culprit, then why would he have the exact same black eye? Given the 

tremendous variability in how a lineup can become biased, perhaps we should expect 

heterogeneity in how these manipulations impact decision strategies. In any case, there is no 

situation in which the relative model predicts more rejections of biased lineups than fair lineups 

and therefore the relative model cannot be reconciled with the data from Experiment 2.  

 Finally, it is worth considering the implications of this work in light of the distinction 

between psychological process models and mere measurement models. Signal detection theory is 

unique in that it is used as both a process model and as a measurement model (Macmillan, 1993). 

From a process-model perspective, the absolute and relative judgment models reflect 

assumptions about the psychological reality of how witnesses go about completing lineups. 

Conversely, the measurement-model perspective is agnostic about psychological reality and 

concerned only with the potential of the model to offer a mapping between observed data and 

latent psychological constructs. In other words, from a measurement-model perspective, one can 

fit a model to data without committing to the psychological reality of that model.  

As a processing model, the absolute rule implies that the witness’ decision to identify or 

reject is based on a simple comparison between the best-matching lineup member and her 

memory for the culprit. At least to us, that process seems highly plausible. In contrast, the 
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relative rule assumes that witnesses engage in the much more cumbersome process of computing 

a difference score that reflects the relative strength of the BEST-matching lineup member 

compared to the remaining lineup members (REST). It is unclear to us that witnesses would be 

both able and motivated to carry out this decision process, especially given the availability of the 

simpler and more intuitive absolute rule. The absolute rule appears higher in face validity than 

does the relative rule. Further, the data patterns observed in both Experiments 1 and 2 indicate 

that witnesses behaved as if they had adopted an absolute-judgment strategy and contrary to how 

they should have behaved if they had adopted a relative-judgment strategy.  

 Although the present data weigh against the validity of the relative-judgment model as a 

psychological processing model, one might wish to argue that the relative-judgment model 

remains a valid measurement model. But even if we assume the relative model is merely a 

measurement model and not a psychological processing model, the present results are still 

problematic. Indeed, the lineup outcomes that we observed in both Experiments 1 and 2 

contradict the predictions of the relative model, which implies that the relative model is a flawed 

measurement device. Psychological realities aside, a measurement model is only as good as the 

predictions it makes. In both Experiments 1 and 2, the observed data contradicted the predictions 

of the relative model. 

Conclusion 

 The results of two experiments demonstrated that absolute-judgment models better 

predict eyewitness decision-making than do relative-judgment models. In fact, the relative-

judgment model failed two critical tests. Contrary to the predictions of the relative-judgment 

model, witnesses were more likely to reject low-similarity culprit-absent lineups than high-

similarity culprit-absent lineups (Experiment 1) and more likely to reject biased lineups than fair 
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lineups (Experiment 2). These same patterns were also evident in witness confidence judgments. 

Both patterns are consistent with the predictions of the absolute-judgment model. In fact, there 

was only one aspect of the data that was inconsistent with the predictions of the absolute model: 

as predicted by the relative model, witnesses were more confident in suspect identifications from 

biased lineups compared to suspect identifications from fair lineups. It may be that witnesses rely 

primarily on absolute-judgment strategies but revert to relative-judgment strategies for more 

deliberative tasks, such as rendering expressions of confidence. One could also envision a 

witness that is struggling to complete a lineup task reverting to a relative-judgment strategy at 

the decision-making stage. Future models of eyewitness decision-making might allow for this 

sort of sequential blending of decision rules.  

 In addition to raising several questions for future research, the present experiments make 

two points abundantly clear. First, absolute-judgment models better predict eyewitness decision-

making than do relative-judgment models. Second, the predictions of pure relative models are 

directly contradicted by some of the most fundamental data patterns in the identification 

literature. Contrary to the predictions of the relative-judgment model, witnesses were more likely 

to reject biased lineups than fair lineups. Likewise, the relative-judgment model’s prediction that 

witnesses would be no more likely to reject low-similarity culprit-absent lineups than high-

similarity culprit-absent lineups was also contradicted by the data. Any model that does not 

predict more correct rejections from a low-similarity culprit-absent lineup than from a high-

similarity culprit-absent lineup cannot be considered viable. Future research will be required to 

determine whether accurately predicting performance on lineups requires models that permit 

witnesses to make use of both absolute and relative signal strength. In the meantime, the 
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experimental data appear to be much more in line with the predictions of absolute-judgment 

models than with the predictions of relative-judgment models.  
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Supplemental Materials for Smith, Ying, Goldstein, & Fitzgerald (2024) 

 The purpose of this supplemental materials document is twofold. First, we present a 

series of simulations examining the impact of correlated memory signals on the predictions of 

the absolute (MAX) and relative (BEST-REST) judgment models. Second, we fit the relative 

model to the data from both Experiments 1 and 2 and assessed whether its conclusions converged 

with those of the absolute model.  

Assessing the Impact of Correlated Memory Signals on the Predictions of the Absolute and 

Relative Models 

There is an emerging consensus in the eyewitness identification literature that the 

memory signals emanating from members of the same lineup should be correlated (e.g., Akan et 

al., 2021; Smith et al., 2022; Wixted et al., 2018). In other words, when one lineup member 

provides a strong match to the witness’ memory for the culprit, other members of that same 

lineup should also tend to provide a strong match. Likewise, when one lineup member provides a 

weak match, the other lineup members should also tend to provide a weak match. For simplicity, 

the model predictions that we generated in the main body of our paper assumed that memory 

signals were independent or uncorrelated (𝜌 = 0). We made that simplifying assumption because 

the qualitative predictions of both the absolute model and the relative model were consistent 

across large variations in the degree of correlation among memory signals. As we will 

demonstrate below, the absolute model consistently predicts more rejections of low-similarity 

culprit-absent lineups than high-similarity culprit-absent lineups and the relative model 

consistently predicts no difference in rejection rates. For fair versus biased culprit-absent lineups, 

the absolute model consistently predicts more rejections from biased than fair lineups and the 

relative model consistently predicts more rejections from fair lineups than biased lineups. For the 
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culprit-present condition, the absolute model predicts either a slight increase in rejections from 

biased lineups or no change in rejection rates and the relative model consistently predicts more 

rejections of fair lineups.  

 For the analyses that we present below, we used R (R Core Team, 2021), RStudio 

(RStudio Team, 2022), Tidyverse (Wickham, 2019), faux (DeBruine, 2023), and grid (Murrell, 

2005). 

Rejection Rates for Low-Similarity Versus High-Similarity Culprit-Absent Lineups 

Across Various Levels of Signal Correlation (Experiment 1 Predictions). We examined what 

impact assuming correlated memory signals among lineup members had on the predictions of 

both the absolute (MAX) and relative (BEST-REST) models. We started with predictions for 

rejection rates from low-similarity versus high-similarity culprit-absent lineups (Experiment 1). 

As with the predictions that we present in the main body of this article, predictions were derived 

from simulations (N = 10,000) of six-person low-similarity and high-similarity culprit-absent 

lineups under the assumptions of absolute (MAX) and relative (BEST-REST) decision rules. 

Low-similarity lineups were comprised of six random draws from the low-similarity filler 

distribution [𝑋~𝑁(𝜇 = −1, 𝜎 = 1)] and high-similarity lineups were comprised of six random 

draws from the high-similarity filler distribution [𝑋~𝑁(𝜇 = 0, 𝜎 = 1)]. Critically, we designed 

our experiments so that relative similarity within culprit-absent lineups was constant and so that 

only absolute signal strength varied. We did this by creating pairs of targets (A-A', B-B',…, H-

H'), selecting relatively high-similarity fillers for each target (e.g., A fillers for target A and A' 

fillers for target A') and then manipulating whether witness-participants viewed lineups with the 

high-similarity fillers (e.g., A fillers for target A) or the low-similarity fillers (e.g., A' fillers for 

target A). Hence, low-similarity fillers were as similar to other low-similarity fillers as high-
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similarity fillers were to other high-similarity fillers and the filler signals were equally correlated 

for both high- and low-similarity culprit-absent lineups. Although filler signals were equally 

correlated in low-similarity and high-similarity lineups, the high-similarity fillers should have 

been more strongly correlated with the culprit than the low-similarity fillers (e.g., Shen et al., 

2023; Smith et al., 2022). We examined whether this had any impact on model predictions.  

 Our simulations included two correlation parameters: 𝜌6 and 𝜌.. The correlation among 

culprit-absent lineup fillers was governed by 𝜌6. For high-similarity fillers, 𝜌6 also governed the 

correlation between the fillers and the culprit. For low-similarity fillers, 𝜌. governed the degree 

of correlation between the fillers and the culprit and we constrained 𝜌. so that it was equal to or 

less than 𝜌6. We systematically varied both correlation parameters over a wide range of values 

from .00 to .75. Across all simulations, the absolute model consistently predicted more rejections 

from low-similarity culprit-absent lineups than from high-similarity culprit-absent lineups and 

the relative model consistently predicted no change in rejection rates. Figure S1 displays the 

predictions of the absolute (MAX) and relative (BEST-REST) models for the following 

parameter settings: low-similarity filler distribution [𝑋~𝑁(𝜇 = −1, 𝜎 = 1, 𝜌6 = .75, 𝜌. = .00	)] 

and high-similarity filler distribution [𝑋~𝑁(𝜇 = 0, 𝜎 = 1, 𝜌6 = .75)]. 

 Although the above simulations did not generate predictions directly from the model 

likelihood functions, we verified that the likelihood functions generated the same predictions. 

Finally, we also considered what the models would have predicted if the signals of high-

similarity fillers were more strongly correlated with one another than were the signals of low-

similarity fillers. In that case, the absolute model continued to predict more rejections of low-

similarity lineups than high-similarity lineups, but the relative model predicted more rejections 

of high-similarity lineups than low-similarity lineups. 
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Figure S1: Evidence Strength Distributions Predicted by the Absolute and Relative Models on 

High-Similarity and Low-Similarity Culprit-Absent Lineups  

 

Rejection Rates for Fair Versus Biased Lineups Across Various Levels of Signal 

Correlation (Experiment 2 Predictions). For fair and biased culprit-present and culprit-absent 

lineups (Experiment 2) we also used two correlation parameters. The first parameter specified 

the correlations between (1) fair fillers and the culprit, (2) fair fillers and the biased innocent-

suspect, and (3) fair fillers with other fair fillers. The second parameter specified the correlations 

between (1) the biased fillers and the culprit, (2) the biased fillers and the innocent suspect, and 

(3) the biased fillers with other biased fillers. For brevity, we refer to these as memory signal 

correlations for fair and biased lineups, respectively. We varied both correlation parameters from 
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.00 to .75 in increments of .25, but with the added constraint that the correlation for biased fillers 

could not exceed the correlation for fair fillers, which makes sense because as fillers become 

more similar to the culprit, the signals should become increasingly correlated (Shen et al., 2023; 

Smith et al., 2022; Wixted et al., 2018). 

 As with the predictions that we present in the main body of this article, predictions were 

derived from simulations (N = 10,000) of six-person fair and biased culprit-absent and culprit-

present lineups under the assumptions of absolute (MAX) and relative (BEST-REST) decision 

rules. Fair culprit-absent lineups were comprised of six random draws from the fair filler 

distribution [𝑋~𝑁(𝜇 = 0, 𝜎 = 1)] and biased culprit-absent lineups were comprised of one draw 

from the fair filler distribution and five draws from the biased filler distribution 

[𝑋~𝑁(𝜇 = −1, 𝜎 = 1)]. For the culprit-present lineups depicted in this supplementary materials 

document, we assumed that the culprit was drawn from a normal distribution with a mean of 1.5 

and variance of 1: [𝑋~𝑁(𝜇 = 1.5, 𝜎 = 1)]. We also considered several other parameter settings 

and consistently found the same qualitative patterns of results that we report here. Fair culprit-

present lineups were comprised of one random draw from the culprit distribution and five 

random draws from the fair filler distribution and biased culprit-present lineups were comprised 

of one random draw from the culprit distribution and five random draws from the biased filler 

distribution.  

 Figure S2 shows the predictions of the absolute model for culprit-absent lineups. The 

absolute model consistently predicts more rejections from biased culprit-absent lineups than 

from fair culprit-absent lineups. This is evidenced by the fact that the biased evidence 

distribution is shifted to the left of the fair evidence distribution, meaning that the absolute model 
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predicts that witnesses would see less evidence for making an affirmative identification on a 

biased lineup compared to a fair lineup.  

There is one exception to this prediction. In the extreme case where the memory signal 

correlations in fair lineups are extremely high (𝜌6 = .75) and the memory signals in biased 

lineups are uncorrelated (𝜌6 = .00), whether the absolute model predicts more rejections from 

fair or biased lineups depends on the placement of the witness’ decision criterion (see upper 

righthand corner of Figure S2). This is evident from the fact that the evidence distributions cross-

over. Typically, the absolute model predicts more rejections from biased lineups than from fair 

lineups, because the strength of the MAX signal should tend to be weaker on a biased lineup than 

on a fair lineup. But in the extreme case where there is almost no variability among members of 

the same fair culprit-absent lineup—which is what 𝜌6 = .75 implies—there will be instances 

where all the fair lineup members provide an extremely weak match to memory. Conversely, 

because the biased lineup members are uncorrelated, typically there will be at least one that does 

not provide an extremely weak match to memory and whom cannot be rejected with the same 

confidence as the fair lineup members. Hence, in this extreme case of almost no variability 

among fair lineup members and lots of variability among biased lineup members, the absolute 

model predicts that whether fair or biased lineups lead to more rejections depends on criterion 

placement. But we want to reiterate that this is a rather extreme example and that, in all other 

situations the absolute model predicts more rejections from biased culprit-absent lineups 

compared to fair culprit-absent lineups. 
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Figure S2: Evidence Strength Distributions Predicted by the Absolute Model on Fair and 

Biased Culprit-Absent Lineups 

 

 Figure S3 shows the predictions of the absolute model for culprit-present lineups. The 

absolute model consistently predicts either a slight increase in rejections of biased culprit-absent 

lineups compared to biased culprit-present lineups or no change in rejection rates.  
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Figure S3: Evidence Strength Distributions Predicted by the Absolute Rule on Fair and 

Biased Culprit-Present Lineups 

 
 Figure S4 and Figure S5 show the predictions of the relative model for culprit-absent and 

culprit-present lineups, respectively. For both culprit-absent and culprit-present lineups, the 

relative model consistently predicts more rejections of fair lineups than biased lineups. This is 

evident from the fact that the fair distribution is shifted to the left of the biased distribution, 

meaning that the relative model predicts that there would be less evidence for a witness to make 

an affirmative identification from a fair lineup compared to a biased lineup. It is also noteworthy 

that if you compare the magnitude of the predicted differences in Figures S4 and S5, the relative 

model predicts a larger difference in rejection rates for culprit-present conditions than for culprit-
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absent conditions, which is the complete opposite of what the absolute model predicts and the 

complete opposite of what the empirical data show.  

Figure S4: Evidence Strength Distributions Predicted by the Relative Model on Fair and 

Biased Culprit-Absent Lineups 
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Figure S5: Evidence Strength Distributions Predicted by the Relative Model on Fair and 

Biased Culprit-Present Lineups 

 
 

 
 
 

Once again, although the above simulations did not generate predictions directly from the 

model likelihood functions, we verified that the likelihood functions generated the same 

predictions. 

Fitting the Relative-Judgment Model to the Experimental Data 

 The purpose of the present section is to demonstrate that the relative model leads to the 

same general conclusions as the absolute model. Namely, low-similarity lineups better 
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discriminate between guilty-suspect identifications and innocent-suspect identifications than do 

high-similarity lineups and fair lineups better discriminate between guilty-suspect identifications 

and innocent-suspect identifications than do biased lineups. For reasons that we explain in the 

main body of this article, our intention was not to compare the absolute fit of non-nested models. 

There are several reasons why that is not an appropriate criterion for assessing construct validity. 

Nevertheless, it will become apparent below that the relative model provided a suboptimal 

absolute fit to both the data from Experiment 1 (comparing low-similarity and high-similarity 

lineups) and to the data from Experiment 2 (comparing fair and biased lineups).  

 In the main body of this paper, we refer to the theoretical models as the absolute and 

relative models and to their decision rules as the MAX and BEST-REST rules, respectively. In 

this supplemental materials document, we fit the relative model to the data from both 

Experiments 1 and 2. More specifically, we fit the ensemble model to the experimental data, 

which is the mathematical equivalent of the BEST-REST model (Wixted et al., 2018). For 

transparency, in this supplemental materials document we refer to the relative model as the 

ensemble model. We used R (R Core Team, 2021) and RStudio (RStudio Team, 2022) to 

facilitate the model-fitting routine. We wish to thank Akan et al. (2021) for making their Matlab 

code publicly available. As a starting point, we converted their Matlab code into R code. 

Using the Ensemble Model to Assess the Impact of Absolute Filler Similarity on 

Suspect-Identification Discriminability (Experiment 1). As in the main body of this paper, we 

binned affirmative identifications into four confidence bins (90% - 100%, 70% - 80%, 50% - 

60%, and 0% - 40%) and included a fifth bin comprised of lineup rejections collapsed over all 

levels of confidence. High and low similarity lineups each had 12 degrees of freedom: culprit 

identifications at each confidence bin [4], culprit-present filler identifications at each confidence 
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bin [4], and culprit-absent mistaken identifications at each confidence bin [4]. There were 24 

degrees of freedom in total. The ensemble model included 10 free parameters. We permitted the 

location of the culprit distribution to vary freely in both low-similarity and high-similarity lineup 

conditions and estimated the locations of four decision criteria for each lineup condition. Hence, 

the unconstrained model had 10 free parameters and 14 degrees of freedom.  

 The best-fitting parameter estimates for the unconstrained model are summarized in Table 

S1 and Table S2 contrasts observed and predicted proportions. The unconstrained model 

provided a suboptimal fit to the data 𝜒.(14) = 31.36, 𝑝 = .01. As expected, the low-similarity 

lineup better discriminated between guilty-suspect identifications and innocent-suspect 

identifications than did the high-similarity lineup. To test whether this difference was significant 

we fit a simpler model in which we constrained the distance between the culprit and filler 

distributions to be equivalent across low-similarity and high-similarity lineups. The constrained 

model provided a poor absolute fit to the data, 𝜒.(15) = 93.02, 𝑝 < .001, and a significantly 

worse fit than the unconstrained model, 𝜒.(1) = 61.67, 𝑝 < 	 .001. Hence, consistent with the 

absolute model, the ensemble model also leads to the conclusion that low-similarity lineups 

better discriminate between guilty-suspect identifications and innocent-suspect identifications 

than do high-similarity lineups. 

Table S1: Best-Fitting Parameter Estimates of the Ensemble Model to Low- and High-

Similarity Lineups 

Parameter Low-Similarity Lineup High-Similarity Lineup 
𝜇culprit 2.53 1.82 
𝜆45#655 2.60 2.24 
𝜆75#85 2.07 1.75 
𝜆95#:5 1.75 1.45 
𝜆5#;5 1.51 1.20 
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Table S2: Observed Values and Ensemble-Predicted Values for Low-Similarity and High-

Similarity Culprit-Present and Culprit-Absent Lineups 

 Culprit Present  Culprit Absent 

Lineup Hit 
Culprit FA Filler False 

Rejection  
FA 

Innocent 
Suspect 

FA Filler Correct 
Rejection 

Low Similarity        
90-100 .28 (.30) .01 (.00)   .00 (.00) .01 (.01)  
70-100 .49 (.51) .03 (.01)   .01 (.01) .07 (.06)  
50-100 .64 (.65) .06 (.03)   .02 (.03) .12 (.14)  
0-100 .71 (.73) .09 (.05) .20 (.22)  .04 (.05) .22 (.24) .73 (.72) 

High Similarity        
90-100 .20 (.21) .02 (.01)   .01 (.01) .05 (.03)  
70-100 .38 (.40) .09 (.05)   .03 (.03) .14 (.13)  
50-100 .50 (.52) .15 (.10)   .05 (.05)  .26 (.27)  
0-100 .59 (.61) .21 (.16) .19 (.24)  .08 (.09) .40 (.42) .53 (.49) 

Note. Number in parentheses are predicted. FA = False Alarm. 
 

Using the Ensemble Model to Assess the Impact of Lineup Bias on Suspect-

Identification Discriminability (Experiment 2). As in the main body of this paper, we binned 

affirmative identifications into four confidence bins (90% - 100%, 70% - 80%, 50% - 60%, and 

0% - 40%) and included a fifth bin comprised of lineup rejections collapsed over all levels of 

confidence. The fair lineup had 12 degrees of freedom in total: culprit identifications at each 

confidence bin [4], culprit-present filler identifications at each confidence bin [4], and culprit-

absent mistaken identifications at each confidence bin [4]. For biased lineups the innocent 

suspect was drawn from a stronger strength distribution than were the lineup fillers and so we 

distinguished between culprit-absent mistaken identifications of innocent suspects and culprit-

absent mistaken identifications of fillers. As a result, the biased lineup had 16 degrees of 

freedom: culprit identifications at each confidence bin [4], culprit-present filler identifications at 

each confidence bin [4], innocent suspect identifications at each confidence bin [4], and culprit-
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absent filler identifications at each confidence bin [4]. Hence, there were 28 degrees of freedom 

total. 

The ensemble model included 11 free parameters: three location parameters and eight 

decision criteria [four criteria for the biased lineups and four criteria for the fair lineups]. We 

permitted the location of the culprit distributions to vary freely on fair and biased lineups and we 

also permitted the location of the innocent-suspect distribution to vary freely on biased lineups. 

We also estimated the location of four decision criteria on both fair and biased lineups. Hence, 

the unconstrained model included 11 free parameters and 17 degrees of freedom.  

The best-fitting parameter estimates for the unconstrained model are summarized in Table 

S3, and Table S4 contrasts observed and predicted proportions. The unconstrained model 

provided a suboptimal fit to the data 𝜒.(17) = 42.41, 𝑝 < 	 .001. As expected, the fair lineup 

better discriminated between guilty-suspect identifications and innocent-suspect identifications 

than did the biased lineup. This is evidenced by the fact that the distance between the culprit and 

innocent-suspect distributions is greater for the fair lineup (1.19 – 0.00 = 1.19) than for the 

biased lineup (2.11 – 1.16 = 0.95). To test whether this difference was significant we fit a simpler 

model in which we constrained the distance between the culprit and filler distributions to be 

equivalent across fair and biased lineups. The constrained model provided a poor absolute fit to 

the data, 𝜒.(18) = 62.11, 𝑝 < .001, and a significantly worse fit than the unconstrained model, 

𝜒.(1) = 19.70, 𝑝 < 	 .001. Hence, consistent with the absolute model, the ensemble model also 

leads to the conclusion that fair lineups better discriminate between guilty-suspect identifications 

and innocent-suspect identifications than do biased lineups. 

 



EYEWITNESS DECISION-MAKING 72 

Table S3: Best-Fitting Parameter Estimates of the Ensemble Model to Fair and Biased 

Lineups 

Parameter Fair Lineup Biased Lineup 
𝜇culprit 1.19 2.11 

𝜇<>>?@2>A	=CDE2@A - 1.16 
𝜆45#655 2.14 2.54 
𝜆75#85 1.67 2.02 
𝜆95#:5 1.38 1.71 
𝜆5#;5 1.08 1.48 

 

Table S4: Observed Values and Ensemble-Predicted Values for Fair and Biased Culprit-

Present and Culprit-Absent Lineups 

 Culprit Present  Culprit Absent 
Lineup Hit 

Culprit 
FA Filler False 

Rejection 
 FA 

Innocent 
Suspect 

FA Filler Correct 
Rejection 

Fair        
90-100 .10 (.10) .03 (.03)   .01 (.01) .05 (.05)  
70-100 .22 (.23) .11 (.09)   .03 (.03) .17 (.16)  
50-100 .31 (.32) .21 (.18)   .06 (.06) .31 (.31)  
0-100 .41 (.41) .33 (.30) .26 (.29)  .10 (.10) .48 (.50) .42 (.39) 
Biased        
90-100 .19 (.20) .01 (.00)   .04 (.04) .02 (.01)  
70-100 .37 (.38) .04 (.02)   .12 (.12) .06 (.04)  
50-100 .51 (.51) .07 (.05)   .20 (.21) .10 (.09)  
0-100 .61 (.61) .10 (.08) .29 (.31)  .27 (.28) .14 (.15) .59 (.57) 

Note. Number in parentheses are predicted. FA = False Alarm. 
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